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Improving health care quality requires the
elimination of unnecessary variation in the care
process. Decision support applications already exist
that can foster adherence to standards. The
challenge resides in developing standards consistent
with good medical practice. In this paper we present
our efforts in determining where sufficient clinical
data are captured electronically to automatically
define a care process, and what analyses can be done
to identify additional data that would allow a care
process to be defined. Data routinely collected by a
hospital information system have been examined.
The analysis tools utilized include logistic regression,
a neural network, a Bayesian network; and a rule
induction program.

INTRODUCTION

Health care consumers and clinicians are changing
the face of health care delivery across the United
States. Consumers are demanding high-quality care
at reasonable costs. Clinicians are placing increased
emphasis on the practice of evidence-based medicine.
Health care systems are seeking to meet these
demands by employing the techniques of continuous
quality improvement.

Improving health care quality while reducing costs
requires the elimination of unintended and
unnecessary variation in the care process. Decision
support applications already exist to foster adherence
to standards. These applications can help reduce
variability. The challenge resides in developing
standards based on scientific evidence and yet
consistent with local norms of practice.

We postulate that by employing tools and techniques
from the field of knowledge discovery in databases
(KDD), we can induce models from a clinical data
repository that reflect local physician ordering
patterns. Information relating patient-specific
parameters to treatment orders can then serve as a
foundation for explicit, evidence-based practice
guidelines.

BACKGROUND

Continuous Quality Improvement
Donald M. Berwick is a current health care champion
of the quality improvement techniques pioneered by
Shewhart and Deming. 12 Berwick discriminates
between intended (based on reason) and unintended
(not anticipated) variation.35 Yet to judge variation
as intended or unintended, it is necessary to measure
it against a standard. Brook6 and Eddy7 have
outlined the difficulties in establishing standards such
as practice guidelines in health care.

To be most effective, practice guidelines should
prompt the clinician to identify relevant signs,
symptoms, and diagnostic findings, and then present
specific care actions to be initiated. A simple
example would be: "If patient is 65 years or older,
give influenza shot."

Guideline Development
Guidelines vary in complexity, explicitness, and
validity. Some are the product of committee
consensus. Others are rooted in scientific data.
Guidelines should include rules about when to
initiate and/or when to avoid health care
interventions and should be based on hard data9.
Nevertheless, they are frequently developed solely
through expert consensus. This method is subject to
the dangers of recall bias and the elevation of
unsubstantiated opinion to the status of fact.

Most practice databases were primarily established to
trsmit and store data to facilitate clinical care.
Though health care researchers make use of this
record of clinical experience, data collected in the
course of patient care represent an underutilized
resource in guideline development. 1012 By mining
this rich data source, we can provide a framework for
developing evidence-based care processes.

KDD Applications in Health Care
One can find an increasing number of KDD
applications in health care. These studies and others
have focused on the prediction of clinical diagnosis
or outcome. Tu and Guerriere used a neural network
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to predict length of stay in the intensive care unit
following cardiac surgery.'3 Lapuerta et al. used a
neural network to predict the risk of coronary artery
disease. 14 Clarke and Waclawiw applied the
ITRULE generalized rule induction algorithm to
analyze a database of a 5-year cohort study of the
effects of obesity on major cardiovascular disease
risk factors.15 Hadzikadic et al. compared concept
formation and logistic regression in predicting death
in trauma patients. 16 Kukar et al. compared the
performance of several algorithms including decision
tree induction and Bayesian classification in the
prognosis of femoral neck fracture surgery. 17

This research focuses on applying KDD tools to
explore the relationship of patient parameters and
treatments. Following the knowledge discovery
process set forth by Fayyadl8, we analyze data
routinely collected by a hospital information system
(HIS). The goal is to infer patient-specific orders
using the clinical data available at the time when
critical health care decisions are made.

The HELP System
The data for our experiments were extracted from the
HELP Hospital Information System. This HIS has
been in use from more than 20 years in the LDS
Hospital, a 520 bed tertiary care center in Salt Lake
City, Utah. It is a product of decades of research,
development, and testing."9 The system's Tandem
mainframe is interfaced with a variety of
departmental computer systems. These include
systems for medical records, pharmacy, laboratory,
electrocardiography, and a collection of local area
networks that support clinical, research, and
administrative tasks.

The key feature of the HELP System that facilitates
research such as the proposed effort is the integrated
clinical data repository. Clinicians throughout the
hospital enter data pertinent to the health
management of each inpatient. Large amounts of
data flow in from departmental systems, e.g.
pharmacy, lab, nursing, etc. Each patient's record is
continuously available to personnel involved in direct
care of the patient as well as researchers within the
organization.

METHODS

Our research can be broken into four phases. Phase I
consisted of preliminary data analysis to create a
target data set for our experiments. In Phase II, we
gained familiarity with the algorithms and function of

the tools we would use to mine our data. In Phase
III, we apply these tools in discovering data
relationships relevant to the treatment of acute
myocardial infarction (AMI). Phase IV will explore
methods of refming our results by including
information not available in the database.

Our target data set represents two periods of clinical
practice at LDS Hospital. Cases extracted from
1990-1993 will be used in Phase II and III. Cases
from 1994-1995 will be used in Phase IV.

The 1990-1993 population contains 854 cases. Each
extracted case represents an inpatient with the
following characteristics:
a) discharge diagnosis: acute myocardial infarction
b)source of admission: Emergency Department
c)reason for admission: AMI (confirmed as acute by

estimating the time of infarct to be prior to the
recorded admit time)

d)discharge disposition: live.

The data set is pre-reduced in the sense that not all
available variables will be utilized. Case attributes
include a unique patient identifier, age, gender, type
of AMI, Killip's classification of AMI2, discharge
diagnoses (ICD92 ), and medication orders placed
during the first 24 hours from admission.

Cases exhibiting gross data abnormalities were
excluded during extraction. It has been assumed that
the absence of an electronic entry of a medication
order indicates no order for that medication. This
assumption may not always hold, yet there exists no
electronic facility for their validation.

We have chosen to employ four prediction methods
represented by four KDD tools: CN2, the Neticat
application, NevProp3 , and logistic regression.
CN2 is an implementation of a production rule
induction algorithm developed by Clark and
Niblett.22'3 Netica is a commercial software
package for working with Bayesian networks.24
NevProp3D, is a backpropagation artificial neural

25network simulator developed by Goodman.
Logistic regression was performed using SPSS.26
Each KDD tool was trained with 80% of the study
population cases. These cases were randomly
sampled without replacement and presented in the
same order to each tool. NevProp3 trained using its
optional bootstrap function with the number of boots
= 50. The logistic regression models were developed
using both the backward stepwise and forced entry
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methods. CN2 and NeticaT" followed their default
training parameters without modification. After
training, the resulting models for each tool were
tested with the remaining 20% of the cases. The
decision threshold was set such that an output 2 0.50
constituted a positive "medication order present"
decision.

For Phase II, we chose a relatively well-defined
problem to familiarize ourselves with the functions
and prediction capabilities of our KDD tools. The
goal of these initial experiments was to predict
correctly an order for a diabetic agent. The
independent variables or attributes used for
prediction were a discharge diagnosis of diabetes
mellitus and the highest serum glucose value
obtained in the first 24 hours from hospital
admission.

The clinical focus of Phase III and IV is the
management of AMI. Many of the medications used
to treat AMI must be administered within a few hours
of symptom onset to achieve their maximum effect.
The American College of Cardiology has developed
detailed guidelines concerning the administration of
these medications.27 One of our goals is to discover
the magnitude of variation between these guidelines
and documented practice. We will then be able to
specifically target deficient areas for improvement.
Another goal is to determine the electronic
availability of patient data necessary to make
treatment decisions.

Type of AMI, Killip class, gender, and age group
were chosen as the initial variables of interest. Type,
gender and age are captured electronically and are
easily downloaded. Killip class, which represents the
degree of heart failure, was inferred from discharge
diagnoses. Variables such as electrocardiography
results and time from infarct to Emergency
Department presentation are not present in the
electronic records for these cases. These variables,
which are assumed to be more predictive of the
administration of certain medications, will be the
focus of Phase IV.

RESULTS

In Phase II, CN2, NevProp3 , and logistic regression
performed comparably on the data set.
Approximately 67% of the patients who actually
received glucose lowering agents were correctly
classified as receiving a medication order by these
three tools. Netica performed poorly in relation to
the other tools. Only 33% of the positive medication
orders were correctly classified. Netica'sTI model is
constructed by the user. The models for the other
three tools are created without user intervention
during the course of training. Hence, Netica's poor

performance may be attributed to an omitted critical
dependency.

For Phase III, 32 medication classes were identified
as directly related to the care of a cardiac patient.
Twenty-five of these medications were ordered for
less than 10 or greater than 80 percent of the
population. The remaining seven were chosen for
further study: 1) antiarrhytbmics, 2) loop diuretics, 3)
combination alpha-beta stimulators (e.g.
epinephrine), 4) calcium channel blockers, 5) anti-
fibrin enzymes, 6) digitalis and related cardiac
glycosides, and 7) beta blockers. The percentages of
patients with orders for these medications and the

uncertainty concerning the proper use of some of the
drugs indicate instances in which the assistance of a

treatment guideline may be warranted.

Sensitivity and Specificity
Tables 1 and 2 present the sensitivity and specificity
of each tool in predicting individual medication
orders. Sensitivity describes the cases which contain
a medication order and for which the tool predicted
an order. Specificity describes the cases without a

medication order for which the tool predicted no

order should be made.

Though logistic regression, either backward stepwise
or forced entry, achieved the better sensitivities
overall, none of the tools attained a sensitivity that
would be considered clinically acceptable.

Table 1. Tool Sensitivitv in
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The failure of each tool to successfully model the
order for anti-fibrin enzymes (medication 5) was
expected. The two clinical factors that determine the
use of thrombolytics, time from onset of chest pain
and bleeding risk, are not present in the electronic
record and, therefore, not in our data set. The
addition of these factors to our models will take place
in Phase IV.

NeticaT achieved the best sensitivity in predicting
orders for anti-fibrin enzymes (0.36). However,
Neticatm did not perform as well as the other tools in
predicting orders for antiarrhythmics, eponephrines,
and digitalis.

The apparent inability of NevProp3® to successfully
model medications 3, 4, 6 and 7 may be attributed to
the limited modifications we made to the default
optimization parameters.

DISCUSSION

We were not surprised by the less than adequate
performance of our first models. The Neticatm and
NevProp3o software, in particular, allow for many
more modifications of learning parameters than we
have tried to date. Future examination of sensitivity
and specificity through the use of receiver operating
characteristic curves may also provide a clearer
picture of each tool's overall accuracy and the
relative strengths and weaknesses among tools.

We have already modified NevProp3® to produce
better sensitivities in predicting orders for
antiarrhythmics (from 0.00 to 0.52) and loop
diuretics (from 0.00 to 0.66) by adjusting the default
sigmoid prime offset optimization setting.

The current version of Neticam does not
automatically model dependencies among
independent variables. This functionality is present
in the other tools. We hypothesize that Netica 's

sensitivity scores will improve as we supplement the
tool with this information.

CN2 performs comparably to the other tools in many
instances, but at a high cost. The number of rules
generated ranged from 28 to 51 with no predictable
trend associating the number of rules with sensitivity.
To be useful, the output should contain a small
number of easily understandable, clinically relevant
rules. We will attempt to tune the software to prune
more aggressively, though this may not be feasible
given the present functionality of the CN2 software.

Furthermore, we initially conjectured that data
routinely included in the electronic medical record
would be insufficient to accurately predict most
admit medication orders. In Phase IV of this
research, we will add to the models data extracted
manually from the paper chart.

In addition to the challenge of model fitting, potential
hazards we have encountered so far include recoding
the data extracted from the HELP clinical repository
into the forms required by the KDD tools. Though
an apparently simple task, it is nevertheless tedious
and subject to error. The data must be frequently
audited to preserve their quality.

The data themselves are subject to an uncertain
amount of noise. These data were originally
collected in the course of clinical practice in a fast-
paced setting. It is possible, and highly probable,
that the electronic record does not reflect the
completeness of the paper-based medical record.

The clinical relevance of discharge diagnosis data is
also questionable. These data are collected for the
primary purpose of billing. However, we will
attempt to estimate the extent of the data noise by
performing a chart review of type of AMI and Killip
classification. We will compare the electronically
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abstracted categories with the written record of the
first 24 hours of care.

CONCLUSIONS

We have presented the results of our preliminary
study in the application of KDD tools in modeling
routinely collected clinical data. This is a work in
progress. Our next steps include refining the models
by adjusting various learning parameters. In the final
phase of this research, we will supplement model
input to include factors that are more clinically
predictive of a medication order. We will then
measure the resulting improvement or deterioration
in model performance.

It is our eventual goal to infer care process models
based on specific patient profiles. These models can
serve as the foundation for evidence-based guidelines
to improve the quality of health care.
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